Third Edition

An Introduction to Cognitive Psychology Processes and disorders

David Groome

with Nicola Brace, Graham Edgar, Helen Edgar, Michael Eysenck, Tom Manly, Hayley Ness, Graham Pike, Sophie Scott and Elizabeth Styles

An Introduction to Cognitive Psychology

An Introduction to Cognitive Psychology: Processes and disorders is a comprehensive introductory textbook for undergraduate students. The third edition of this well-established text has been completely revised and updated to cover all the key areas of cognition, including perception, attention, memory, thinking and language. Uniquely, alongside chapters on normal cognitive function, there are chapters on related clinical disorders (agnosia, amnesia, thought disorder and aphasia) which help to provide a thorough insight into the nature of cognition.

Key features:

- Completely revised and updated throughout to provide a comprehensive overview of current thinking in the field
- Accessibly written and including new authors, including Sophie Scott, Tom Manly, Hayley Ness and Elizabeth Styles, all established experts in their field
- A new chapter on emotion and cognition, written by Michael Eysenck, the leading authority in the field
- Greater coverage of neuropsychological disorders, with additional material from the latest brain imaging research that has completely revolutionized neuropsychology
- Specially designed textbook features, chapter summaries, further reading and a glossary of key terms
- A companion website featuring an extensive range of online resources for both teachers and students.

An Introduction to Cognitive Psychology is written to cover all levels of ability and includes numerous figures and illustrations to assist learning. The book has sufficient depth to appeal to the most able students, while the clear and accessible writing style will help students who find the material difficult. It will appeal to all undergraduate students of psychology, and also medical students and those studying in related clinical professions such as nursing.

David Groome was formerly Principal Lecturer and Senior Academic in Psychology at the University of Westminster, where he worked from 1970 to 2011. He retired from teaching in August 2011 but continues to carry out research and write books. His research interests include cognition and memory, and their relationship with clinical disorders. He has published a number of research papers on these topics and is the co-author of four previous textbooks.

Advance praise for the new edition of An Introduction to Cognitive Psychology:

'A highly useful text which helpfully explains the associated disorders in all the key subject areas of cognitive psychology.' – Parveen Bhatarah, School of Psychology, London Metropolitan University, UK

'An Introduction to Cognitive Psychology comprehensively and exhaustively covers the basics and main topics of cognitive psychology. The authors are all experts in their research areas, and the overall content of the book is informative, up-to-date and clearly structured.' – Wolfgang Minker, Institute of Communications Engineering, Ulm University, Germany

'This book is a highly readable introduction to the major figures and studies in cognitive research. The visuals and summaries included throughout will help students process and understand all of the important information, whilst also provoking discussions surrounding controversial issues in psychology and learning.' – Rosalind Horowitz, College of Education and Human Development, The University of Texas at San Antonio, USA

'Any student wishing to understand basic principles in cognition alongside disorderly behaviour will find this a useful alternative to other introductory cognitive textbooks on the market today. The divergence in basic cognitive function will capture student attention while providing them with a solid foundation.' – Karla A. Lassonde, Minnesota State University, Mankato, USA

'I am very impressed with the distinctive approach taken to cognitive psychology in this textbook, where each topic is explored through the lenses of behavioral research, computer models, clinical neuropsychology and neuroscience. I appreciate the effort that the authors make to integrate neuroscience and neuropsychology, with intriguing case studies and the coverage of disorders skillfully integrated with the rest of the text.' – *Erik Nilsen, Department of Psychology, Lewis and Clark College, USA*

An Introduction to Cognitive Psychology provides an up-to-date, topical and accessible overview of this core area of psychology. The coverage of topics is extensive and there is an excellent balance of theory, research and application in the treatment of each area. Three aspects of this text stand out: the multi-author approach that provides a variety of perspectives from a range of experts; a strong consideration of disorders in cognition, an important, often ignored, aspect of the discipline of great interest to students; and finally, the chapter on cognition and emotion, an important topic rarely covered in texts of this type, is a welcome addition.' – *John Reece, School of Health Sciences, RMIT University, Australia*

'With a unique blend of cognition and clinical (neuro)psychology, this book integrates a comprehensive introduction to the core areas of experimental cognitive psychology with a nuanced review of the cognitive aspects of clinical disorders. The clinical discussion avoids unhelpful syndrome pigeon-holing, and brings alive a topic that many students can find a bit dry.' – Ullrich Ecker, The University of Western Australia, Australia

'This new edition has been updated throughout to include the latest cutting-edge research. Its refreshing approach combines both neuropsychology and cognitive psychology in alternating chapters making it relevant to students of cognitive psychology, neuropsychology or medicine. The book is clearly organized and accessible despite the enormous breadth that it covers.' – *Michael D. Patterson, Nanyang Technological University, Singapore*

'This is a very comprehensive introduction to cognitive psychology with a particular focus on disorders of cognition. The book provides an integrated approach to illustrate how the human mind works through introductions to both normal and disordered cognitive functions. A wide range of topics with different approaches, including experimental and computational modelling approaches, alongside the inclusion of materials from cognitive neuroscience and neuropsychology, will enhance students' understanding of how the brain gives rise to the mind.' – *Janet H. Hsiao*, *Department of Psychology, University of Hong Kong, Hong Kong*

AN INTRODUCTION TO Cognitive Psychology

Processes and disorders

Third Edition

David Groome

With Nicola Brace, Graham Edgar, Helen Edgar, Michael Eysenck, Tom Manly, Hayley Ness, Graham Pike, Sophie Scott and Elizabeth Styles

Third edition published 2014 by Psychology Press 27 Church Road, Hove, East Sussex BN3 2FA

and by Psychology Press 711 Third Avenue, New York, NY 10017

Psychology Press is an imprint of the Taylor & Francis Group, an informa business

© 2014 David Groome, Nicola Brace, Graham Edgar, Helen Edgar, Michael Eysenck, Tom Manly, Hayley Ness, Graham Pike, Sophie Scott, Elizabeth Styles

The right of David Groome, Nicola Brace, Graham Edgar, Helen Edgar, Michael Eysenck, Tom Manly, Hayley Ness, Graham Pike, Sophie Scott, and Elizabeth Styles to be identified as author of this work has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Psychology Press 1999 Second edition published by Psychology Press 2006

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data A catalog record for this book has been requested

ISBN: 978-1-84872-091-6 (hbk) ISBN: 978-1-84872-092-3 (pbk) ISBN: 978-1-315-87155-4 (ebk)

Typeset in Sabon by Book Now Ltd, London

Contents

List of illustrations		xiv
Authors		xxi
Prefac	е	xxiii
Ackno	nwledgements	xxiv
	RODUCTION TO COGNITIVE PSYCHOLOGY vid Groome	2
1.1	Cognitive processes	3
	A definition of cognitive psychology	3
	Stages of cognitive processing	3
	Approaches to the study of cognition	4
1.2	Experimental cognitive psychology	6
	The first cognitive psychologists	6
	The rise and fall of behaviourism	6
	Gestalt and schema theories	7
	Top-down and bottom-up processing	9
1.3	Computer models of information processing	10
	Computer analogies and computer modelling of	
	brain functions	10
	Feature detectors	10
	The limited-capacity processor model	12
1.4	Cognitive neuroscience and neuropsychology	12
	The structure and function of the brain	12
	Information storage in the brain	15
1.5	Automatic processing	17
	Automatic versus controlled processing	17
	Conscious awareness	19
1.6	Minds, brains and computers	22
	Integrating the main approaches to cognition	22
Sun	nmary	22
Fur	ther reading	23
2. PE	RCEPTION	24
	ham Edgar, Helen Edgar and Graham Pike	
2.1	Introduction	25
	Visual perception	25
	Theories of perception – schemas and template	_0
	matching	25
	The Gestalt approach	27
	Feature-extraction theories	28
	Marr's computational theory	29
	r	

	Biederman's recognition-by-components approach	30
	Parallel distributed processing approaches	30
	Visual illusions	31
	The difference between sensation and perception	36
	'Looked but failed to see' (LBFS) accidents	37
	The influence of top-down processing: an example	40
	The constructivist approach: perception for recognition Evidence for the constructivist approach: masking and	41
	re-entrant processing	43
	The Gibsonian view of perception: perception for action	45
	Evidence for the Gibsonian approach	45
	The structure of the visual system	46
	The dorsal and ventral streams	46
	The interaction of the dorsal and ventral streams:	
	perception for recognition and action	48
2.3	Auditory perception	50
	Auditory localisation	51
	Auditory attention	55
	Interactions and real-world examples	55
	Top-down influences on auditory perception	56
2.4	Haptic perception	58
	More than five senses?	58
	Proprioception, kinesthesis and haptic information	60
	Using illusions to explore haptic information	62
2.5	Applications of haptic information to driving	66
	Conclusion	67
	nmary	68
Fur	ther reading	69
	TENTION	70
Eliz	abeth Styles	
3.1	What is attention?	71
3.2	What is attention for?	72
3.3	Where is the limit? The search for the bottleneck	74
	The problem of breakthrough	75
3.5	Subliminal priming effects	76
3.6	Object selection, inhibition and negative priming	77
3.7	Directing the spotlight of visual attention	78
	Cross-modal cueing of attention	80
3.9	Visual search	82
	Evidence for and against FIT	83
	The importance of task differences	85
	Attention, working memory and distraction	86
	Attention and cognitive control	87
	Combining tasks	90
	Practice, automaticity and skill	92
Sum	•	96
Furth	ner reading	97

4.		ORDERS OF PERCEPTION AND ATTENTION a Manly and Hayley Ness	98
	4.1	Introduction	99
	4.2	Synaesthesia	100
		The nature of synaesthesia	102
		Incidence and familiarity	103
		Experimental investigations of synaesthesia	104
		Brain-imaging studies of synaesthesia	105
		Mechanisms underlying synaesthesia	107
		Synaesthesia - advantage or disadvantage?	108
		Conclusions	108
	4.3	Blindsight	109
		Blindsight – a sceptical perspective	110
		The sensation of blindsight	112
		The implications of blindsight: one visual system	
		or two?	112
	4.4	Unilateral spatial neglect	113
		A disorder of attention?	114
		Do we all show neglect?	117
		Rehabilitation for unilateral spatial neglect	117
		Explaining unilateral spatial neglect	118
	4.5	Visual agnosia	119
		Apperceptive and associative agnosia	119
		Form and integrative agnosia	120
		Living with visual agnosia	120
		Perception and action	123
		Comparing form and integrative agnosia	124
		Recognising living and non-living objects	124
	4.6	Disorders of face processing	126
		Living with prosopagnosia	126
		What kind of damage causes acquired prosopagnosia?	127
		Prosopagnosia – a face-specific disorder?	129
		Covert recognition in prosopagnosia	131
		Can prosopagnosia occur without brain damage? Types of impairment in developmental and	132
		congenital prosopagnosia	133
		imary	134
	Furt	her reading	135
5	SHC	DRT-TERM MEMORY	136
	Daı	id Groome	
	5.1	Multistore models of memory	137
		The dual-store theory of memory	137
		Clinical evidence for the STM/LTM distinction	138
		The recency effect	139
	5.2	Measuring STM performance	140
		The duration of STM storage	140
		STM capacity	141

5.3	3 The working memory model	142
	Working memory	142
5.4	The phonological loop	143
	Evidence for the phonological loop	143
	The word-length effect	144
	Sub-components of the phonological loop	144
	Non-speech sounds	145
	The phonological loop and language acquisition	146
5.5	5 The visuo-spatial sketchpad	146
	Measuring the capacity of the visuo-spatial sketchpad	146
	Evidence for the visuo-spatial sketchpad	147
	Sub-components of the visuo-spatial sketchpad	148
5.0	5 The central executive	149
	Investigating the central executive	149
	Impairment of central executive function	149
5.2	7 Working memory theory today	150
	The episodic buffer	150
	Unitary theories of memory	151
	Controlled attention theory	151
	Individual differences in WM	151
	Neuro-imaging studies and WM	153
	mmary	154
Fu	rther reading	155
	NG-TERM MEMORY avid Groome	156
6.	The nature and function of memory	157
	Memory and its importance in everyday life	157
	Encoding, storage and retrieval of memory	157
6.2	2 The first memory experiments	158
	Ebbinghaus and the forgetting curve	158
	Interference and decay	159
6.3	3 Meaning, knowledge and schemas	160
	Bartlett's story recall experiments and the schema theory	160
	The effect of meaning and knowledge on memory	162
	Schemas and scripts	164
	Schemas and distortion	164
	Meaning and mnemonics	165
6.4	Input processing and encoding	166
	Levels of processing theory	166
	Orienting tasks	166
	Levels theory revised	168
	Elaborative and maintenance rehearsal	169
	Elaborative encoding and organisation	169
6.	5 Retrieval and retrieval cues	170
	Recall and recognition	170
	Generate and recognise theory	171
	Cue-dependent forgetting and the encoding	. –
	specificity principle	171

	Transfer-appropriate processing	173
	Context-dependent memory	174
	State-dependent and mood-dependent memory	176
6	.6 Memory systems	177
	Episodic and semantic memory	177
	Familiarity and recollection	179
	The R & K ('remember and know') procedure	181
	Implicit and explicit memory	181
	Implicit memory in everyday life	183
	Processes underlying different memory systems	185
6	.7 Retrieval practice and retrieval inhibition	185
	Retrieval practice and the testing effect	185
	Decay with disuse	186
	Retrieval-induced forgetting (RIF)	187
	RIF in real-life settings	188
	Retrieval inhibition, disuse and psychiatric disorders	189
	Directed forgetting Reconsolidation	190 191
6		191
6	.8 Memory in everyday life	192
	Ecological validity Autobiographical memory	192
	Flashbulb memories	195
	Eyewitness testimony	197
	The cognitive interview	200
S	ummary	200
	urther reading	202
1		203
7. C	ISORDERS OF MEMORY	204
Ι	David Groome	
7	.1 Amnesia and its causes	205
	The effects of amnesia	205
	Causes of amnesia	205
	Amnesia as an impairment of long-term memory	208
7	.2 Anterograde and retrograde amnesia	210
	Distinguishing anterograde from retrograde amnesia	210
	Testing anterograde and retrograde amnesia	211
	Anterograde and retrograde impairment in organic	
	amnesia	212
	Focal retrograde and focal anterograde amnesia	213
	Explaining the temporal gradient in retrograde	
	amnesia	215
	Brain lesions associated with anterograde and	
	retrograde amnesia	215
7	.3 Intact and impaired memory systems	218
	Motor skills	219
	Implicit memory	220
	Familiarity and context recollection	221
	Episodic and semantic memory	223
	Explaining preserved memory function in amnesia	225

7.4	Theories of amnesia	226
	Encoding deficit theories of amnesia	226
	Retrieval deficit theories of amnesia	227
	Separate impairments of encoding and retrieval	227
	The standard model of consolidation	228
	Multiple trace theory	228
	Impaired declarative memory	229
	Impaired binding	229
	Impaired perceptual processing	230
7.5	Other types of memory disorder	230
	Impairment of short-term memory	230
	Concussion amnesia	231
	ECT and memory loss	232
	Frontal lobe lesions	233
	Memory loss in the normal elderly	234
	Psychogenic amnesia	235
7.6	Rehabilitation	236
	Helping patients to cope with amnesia	236
	Maximising memory performance	236
	External memory aids	237
Sun	imary	238
Fur	ther reading	239
	NKING AND PROBLEM-SOLVING	240
Nıc	ola Brace	
8.1	Introduction	241
8.2	Early research on problem-solving	242
	The Gestalt approach to problem-solving	242
8.3	The information-processing approach to	
	problem-solving	245
	Problem-solving strategies	245
	Difficulties in applying problem-solving strategies	247
	Problem representation	249
8.4	Problem-solving by analogy	251
	Are analogies spontaneously used to solve problems?	253
	Comparing experts and novices	254
	Encouraging the use of analogies to solve problems	256
8.5	Deductive and inductive reasoning	257
	Inductive reasoning: hypothesis generation	258
	Is confirmation bias a general tendency?	259
	Deductive reasoning	261
	Wason's four-card selection task	263
8.6	Theoretical approaches to reasoning	264
	Mental logic theories	264
	Pragmatic reasoning schemata	265
	Mental models	266
	The probabilistic approach	268
	Dual-process accounts	269
	nmary	270
Fur	ther reading	271

9. DISORDERS OF THINKING AND PROBLEM-SOLVING

Nicola Brace

9.1	Introduction	273
9.2	Anatomy and physiology of the frontal lobes	274
9.3	The impact of frontal lobe damage on behaviour	275
	Early clinical studies	275
	Early animal studies	276
	Later clinical studies and the effect on 'executive'	
	functions	277
9.4	Impairments in the deployment of attention	279
	Sustaining and concentrating attention	279
	Suppressing attention	279
9.5	Impairments in abstract and conceptual	
	thinking	281
	Sorting tasks	281
	Evidence concerning perseveration	283
	Going beyond perseveration	284
9.6	Impaired strategy formation	286
	Cognitive estimation tasks	286
	Goal-oriented problem-solving	288
9.7	Deficits in everyday higher-order planning	289
9.8	Conceptual issues	293
	Supervisory attentional system	293
	Alternative approaches	295
	Fractionation of the executive functions of the	
	frontal lobes	296
	Diversity and unity of executive functions	298
A fi	nal note	299
Sum	ımary	299
Fur	ther reading	300

10. LANGUAGE

Sophie Scott

302

272

	-	
10.1	Introduction	303
10.2	The language system	303
	Speech sounds	304
	Visual languages – British Sign Language	306
	Words and morphemes	307
	Sentence level	308
	The level of discourse	309
10.3	Psychology and linguistics	309
	Tasks in the study of language	311
10.4	Recognising spoken and written words	311
	How do we recognise spoken words?	311
	How do we recognise written words?	314
	Morphemes and word recognition	316
	Database approaches	316
10.5	Understanding the meanings of words	317

10.6	Explaining lexical access in language comprehension	318
	How should we model linguistic processing – rules	
	or regularities? The case of regular and irregular	
	past-tense verbs	320
10.7	Sentence comprehension	323
10.8	Language production	326
10.9	Discourse level	330
	Coordinating conversations	330
	Meaning and intention in conversation	331
	Social conversations	332
Not	re la	333
Sun	ımary	334
Fur	ther reading	334
11 D	SORDERS OF LANGUAGE	337
	ophie Scott	
11.1	Introduction	337
	Models of aphasia	339
	The Wernicke–Lichtheim model of aphasia and its	
	modifications	339
	The Boston Aphasia Classification System	341
11.3	Detailed symptoms of aphasic profiles	346
	Broca's aphasia	346
	Wernicke's aphasia	347
	Conduction aphasia	348
	Global aphasia	348
	Transcortical motor aphasia	349
	Transcortical sensory aphasia (TSA)	349
	Mixed transcortical aphasia (isolation aphasia)	349
	Anomic aphasia	349
	Pure word deafness	349
	Phonagnosia	350
	Dysarthria	350
	Speech apraxia	351
	Prosody production and perception	351
11.4	Psychological and psycholinguistic aspects of aphasia	351
	Phonetic deficits	352
	Syntactic deficits	352
	Semantic deficits	352
11.5	Functional imaging of human language processing	353
	Speech perception	353
	A study of speech perception using PET	353
	The neural basis of context effects in speech perception	356
	Rehearsing non-words versus listening to non-words	356
	Neural basis of speech production	357
11.6	Reading	358
	Visual word recognition	358
	Neural control of eye movements	359
	Routes to reading	361

	Surface dyslexia	361
	Phonological dyslexia	362
	Deep dyslexia	362
	Functional-imaging studies of written language	364
11.7	Developmental disorders of language	365
	Developmental disorders of speech perception and	
	production – specific language impairment	365
	Developmental disorders of reading – dyslexia	366
	Developmental disorders of speech production	367
	Disorders of language use in autism	368
Sun	imary	368
	ther reading	369
12. C	OGNITION AND EMOTION	370
M	lichael Eysenck	
12.1	Introduction	371
	Manipulating mood states	372
12.2	Mood and attention	372
	Attentional narrowing	372
	Attention and memory	373
12.3	Mood and memory	374
	Mood manipulations and memory	375
	Flashbulb memories	377
	Recovered memories	377
	Amygdala	379
	Urbach–Wiethe disease	380
	Summary and conclusions	380
12.4		380
	Anxiety	381
	Sadness	384
	Anger	385
	Positive mood	387
	Summary and conclusions	390
	Limitations	391
12.5	Judgement and decision-making: cognitive neuroscience	391
	Cognitive neuroscience research	393
	Limitations	394
12.6	Reasoning	395
1210	Working memory	395
Sun	nmary	396
	ther reading	397
Glossa	Irv	398
Refere		407
	r index	453
	t index	460
, -		

Illustrations

FIGURES

1.1	The main stages of cognitive processing	3
1.2	The four main approaches to studying cognitive	
	psychology	4
1.3	An MRI scanner	5
1.4	William James	6
1.5	A rat learning to run through a maze	7
1.6	A shape recognised by most observers	8
1.7	Schemas generated for comparison with new input	8
1.8	Top-down and bottom-up processing	9
1.9	Wiring to a simple feature detector	11
1.10	Wiring to a complex feature detector	11
1.11	Broadbent's model of selective attention	12
1.12	A side view of the human brain, showing the main lobes	13
1.13	Neurons and their connecting synapses	16
1.14	A cell assembly	16
1.15	A demonstration of automatic processing	18
1.16	Driving a car involves many automatic responses for an	
	experienced driver	18
1.17	The supervisory attention system model	19
1.18	Does your dog have conscious awareness? And is he	
	wondering the same about you?	21
2.1	'But, Grandmother, what big teeth you've got'	26
2.2	Stimuli of the kind used by Shepard and Metzler (1971)	26
2.3	A reversible figure	27
2.4	Examples of Gestalt laws of perceptual organisation	28
2.5	Pandemonium	29
2.6	The Hermann grid	32
2.7	The Müller-Lyer illusion	32
2.8	A possible explanation for the Müller-Lyer illusion	33
2.9	The Ames room	34
2.10	When size constancy breaks down	34
2.11	The avenue and court (strewn with brightly coloured	
	ornaments) carefully constructed by the male	
	bowerbird to woo the female	35
2.12	'Well I never expected that!'	36
2.13	The components of perception	37
2.14	High sensory conspicuity does not guarantee accurate	
	perception	37

2.15	The effect of contrast on detectability	38
2.16	Vehicles that had earlier been carrying members of a	
	BBC TV team, hit by 'friendly fire' from an aircraft in	
	the 2003 Iraq war	40
2.17	What do you see?	41
2.18	The faces of Einstein	42
2.19	Demonstrating what we really see as opposed to what	
	we feel we see	43
2.20	A target and mask of the type used by Enns and Di	
	Lollo (2000)	44
2.21	What do you do with this?	45
2.22	The dorsal and ventral streams	47
2.23	Sound localisation in the horizontal plane	51
2.24	Motion parallax	53
2.25	How many senses do we have?	59
2.26	A (CGI) recreation of the task from the Gallace and	
	Spence (2005) study	63
2.27	The Ebbinghaus illusion	64
2.28	A (CGI) recreation of the task from the Westwood and	
	Goodale (2003) study	65
2.29	Answer to Figure 2.17	69
3.1	Would you hear your name spoken from across a	
	crowded room?	72
3.2	Everyday tasks like shopping demand attention	72
3.3	The Stroop test	73
3.4	A simplified version of Broadbent's filter model	75
3.5	Schematic faces similar to those used by Friesen and	
	Kingstone (1998)	80
3.6	The ventriloquist effect	81
3.7	Stimuli of the type used by Navon (1977)	82
3.8	Examples of the kind of stimuli used in feature	
	integration tasks	83
3.9	A simplified explanation of how Norman and Shallice's	
	(1986) model explains automatic behaviour and	
	behaviour controlled by the SAS in the Stroop task	89
3.10	Multitasking	90
3.11	The power law of practice	94
4.1	Baron-Cohen's investigation of EP's synaesthesia	101
4.2	Weiskrantz's investigation of DB's blindsight	111
4.3	Examples of drawings of clock faces produced by	
	patients with unilateral visual neglect	114
4.4	The attempts of a patient with apperceptive agnosia to	
	copy six simple figures	119
4.5	HJA's definition of the word 'carrot' and his attempt to	
	recognise a line drawing of a carrot	121

4.6	HJA's copy of his favourite etching showing St Paul's	
	Cathedral, London	122
4.7	An example of one of HJA's drawings from memory	122
4.8	Bruce and Young's model of face processing	127
4.9	Would you recognise this cow if you saw her again?	131
5.1	The dual-store model of memory	137
5.2	The serial position curve	139
5.3	The effect of delayed recall on the recency effect	140
5.4	STM forgetting when rehearsal is prevented	141
5.5	The digit span test	141
5.6	Alan Baddeley	142
5.7	The computer as an analogy for WM/SM	143
5.8	The working memory model	143
5.9	If you must do two things at once, make sure they	
	don't use the same WM loop	143
5.10	Access to the phonological loop	145
5.11	Measuring the capacity of the visuo-spatial loop	147
5.12	If you are going for a drive, listen to the music station	4.40
5 4 2	not the football	148
5.13	Revised version of the working memory model	150
5.14	Measures of executive function can predict whether	1.50
- 4 -	you are able to control your weight	152
5.15	The main areas of the brain involved in working	1.50
	memory	153
6.1	The encoding, storage and retrieval stages of memory	158
6.2	The forgetting curve	159
6.3	Picture used to make the balloons passage meaningful	163
6.4	The levels of processing model	166
6.5	The effect of orienting task on retrieval	167
6.6	The revised levels of processing model	168
6.7	Elaborative connections between memory traces	169
6.8	The overlap between features encoded at input and	
	features available in the retrieval cue at output	172
6.9	Retrieval cues leading to a memory trace (Churchill)	173
6.10	Transfer-appropriate processing	174
6.11	The 'wet' and 'dry' contexts	175
6.12	The recall of words by divers under 'wet' and 'dry'	
	learning and retrieval conditions	175
6.13	Does that biscuit bring back memories?	176
6.14	Is this dog reminiscing about events from the past?	178
6.15	Familiar faces – but who are they?	180
6.16	Scores for recognition (explicit) and fragment	
	completion (implicit) after retention intervals of one	
	hour and one week	183
6.17	Automatic and effortful memory systems	185

6.18	The effect of testing on subsequent retrieval of	
	Swahili-English word pairs, after retrieval intervals	
	of 1 day and 7 days	186
6.19	Retrieval-induced forgetting	187
6.20	Where did you leave your car?	188
6.21	An old school photograph	193
6.22	Retrieval scores for personal events from different	
	times of an individual's life	194
6.23	Who is your favourite footballer of all time?	195
6.24	The World Trade Center attack	196
6.25	An eyewitness identifies the guilty person – but could	170
0.25	he be mistaken?	198
6.26	Recall performance with cognitive interview and	170
0.20		201
()7	standard interview procedures	201
6.27	'So what was the weather like when you saw this man	202
	robbing the bank?'	202
7.1	MRI scan of a normal brain compared with the brain	
	of an Alzheimer patient	208
7.2	Anterograde and retrograde amnesia shown in relation	
	to the moment of onset	211
7.3	Memory performance for different periods from the	
/ •0	past	213
7.4	Brain structures involved in memory storage and	215
7.1	consolidation	216
7.5		210
1.5	MRI brain scans of a patient with lesions in the right	210
7 (temporal lobe caused by HSE	218
7.6	An example of a fragmented word stimulus	220
7.7	The performance of Korsakoff amnesics and normal	
	control subjects on tests of explicit and implicit	
	memory	221
7.8	Familiarity judgements and context recollection for	
	pictures in Korsakoffs and normal control subjects	222
7.9	Memory systems proposed by Squire (1992)	225
7.10	A cross-section through the human brain, viewed from	
	the front, showing areas involved in memory function	228
7.11	Frequent blows to the head can sometimes lead to brain	
	injury and cognitive impairment	231
7.12	Patient receiving electroconvulsive therapy	232
7.13	Elderly people normally show very little memory	
/.15	impairment	235
	mpannent	233
8.1	Edward Lee Thorndike	242
8.2	The Maier (1930, 1931) two-string problem	243
8.3	An example of the water jug problem	244
8.4	A solution to the nine-dot problem	245
8.5	The Tower of Hanoi problem	247
0.0	The rewer of funder problem	/

8.6	The Hobbits and Orcs problem	248
8.7	Analogy of electricity and water flow	252
8.8	The Wason selection task	263
9.1	The frontal lobes. Lateral view of the brain illustrating	
	the major subdivisions of the frontal lobes	274
9.2	Phineas Gage's skull. The entry and exit of the tamping	0
0.2	iron are shown here	275
	Phineas Gage	276 281
	Card sorting task Wisconsin Card Sorting Test	281
	Matchstick Test of Cognitive Flexibility	282
	Brixton Spatial Anticipation Test	285
	An example of a problem from the Tower of London	_000
	task	288
9.9	A diagram of the Norman and Shallice model	294
10.1	These DCL since (name) and (after a set) differ an la	
10.1	These BSL signs, 'name' and 'afternoon' differ only in location	307
10.2	Spectrogram of a spoken sentence	312
	Testing the effect of visual context on interpretation	512
10.0	of a sentence	325
11.1	Diagram of the brain showing the position of	
	Broca's area	338
11.2	Diagram of the brain showing Wernicke's area	339
11.3	Wernicke's (1881) model of speech perception and	
	production	340
11.4	Lichtheim's (1885) model of speech perception and	
11 5	production	340
11.5	Kussmaul's (1877) model of speech perception and	242
11 6	production Heilman's (2006) model of speech perception and	343
11.0	production	344
11 7	Heilman's (2006) revised model with additional	577
11./	module for visual object processing	346
11.8	Diagram of the brain showing areas responding to	0.0
	repetition and intelligibility	355
11.9	Diagram of the brain showing area associate with	
	visual processing of words	359
11.10	The control of saccades	360
11.11	A neuropsychological model of the processing of	
	spoken and written language	362
11.12	The network used by Hinton and Shallice	363
12.1	Mean proportion of total details of autobiographical	
	memories that were rated as peripheral for four positive	
	and four negative emotions	374

12.2	Free recall and cued recall as a function of mood state (happy or sad) at learning and at retrieval	377
12.3	Image of the amygdala, a structure that forms part of the limbic system and that is activated in many	0//
	emotional states	379
12.4	Mean anxiety and depression scores as a function of	
	scenario type	382
12.5	Percentage of rounds in which patients with damage to	
	emotion regions of the brain, patients with damage to	
	other regions of the brain, and healthy controls decided	
	to invest \$1 having won or lost on the previous	204
12 (round	384
12.6	Subjective value associated with decision as a function of mood (happy $vs.$ sad) and decision strategy (intuitive	
	<i>vs.</i> deliberative)	389
127	Effects of six positive emotions on persuasiveness of	387
12./	arguments (weak vs. strong)	389
12.8	Effects of mood states on judgment and	507
1210	decision-making	390
12.9	The dorsolateral prefrontal cortex is located	
	approximately in Brodmann areas 9 and 46; the	
	ventromedial prefrontal cortex is located approximately	
	in Brodmann area 10	393
12.10	Brain regions in the anterior dorsolateral prefrontal	
	cortex that were activated more when utilitarian	
	decisions were made than when non-utilitarian decisions	
	were made	393

BOXES

3.1	Shared attention	80
3.2	Local–global (seeing the wood for the trees)	82
3.3	Some everyday slips of action	88
3.4	Attentional blink	92
4.1	Discovering one is a synaesthete: A case history	103
4.2	HJA: Living with visual integrative agnosia	121
4.3	Jeff: Living with prosopagnosia	128
7.1	Case study: Alzheimer's disease (Ronald Reagan)	207
7.2	Case study: Korsakoff syndrome	209
7.3	Case study: Temporal lobe surgery (HM)	214
7.4	Case study: Herpes simplex encephalitis (Clive W)	217
8.1	Expertise	255
8.2	Rules of inference	262

9.1	Three key aspects affected	278
9.2	The case histories of AP, DN and FS	291
9.3	Characteristics of the dysexecutive syndrome	293

Authors

David Groome was Senior Academic in the Psychology Department at the University of Westminster until 2011, when he retired. However, he retains a research connection with the University, and he continues to write cognitive psychology books. Despite all this he has always considered himself to be mainly a guitarist who does psychology in his spare time.

Michael Eysenck is Professorial Fellow at Roehampton University and Emeritus Professor at Royal Holloway University of London. He has produced 46 books and about 160 book chapters and journal articles leading some to accuse him of following the adage, "Never mind the quality, feel the width!"

Nicola Brace is a Senior Lecturer in Psychology at The Open University. She has taught and researched cognitive psychology for over 25 years, and has come to the conclusion that when it comes to solving Sudoku puzzles understanding the brain is not nearly as useful as a good cup of tea.

Graham Edgar is currently employed as a Reader in Psychology at the University of Gloucestershire. He has spent most of his career coming to appreciate that, although psychology can be applied to pretty much everything, the difficult bit is working out how. He is presently researching situation awareness in the military, health, fire-fighting and driving domains and trying to see if neuroscience can explain it. He is an optimist.

Helen Edgar worked as principal research scientist at BAE SYSTEMS for more years than she cares to remember. She now divides her time between writing and consultancy regarding road traffic collisions. Her spare time is spent trying to 'herd cats', or at least keep her Persian off the computer whist she is writing.

Tom Manly is a clinical psychologist and programme leader at the Medical Research Council Cognition and Brain Sciences Unit in Cambridge. His insatiable need for attention has led him to perform in one of the UK's least successful bands and to attempt stand-up comedy, only one of which has been routinely associated with audience laughter.

Hayley Ness is a Lecturer in Psychology at The Open University, where she chaired the largest cognitive psychology course in Europe.

She is particularly passionate about memory and face processing but has a terrible memory and can't remember people's names. Therefore confirming the adage that people study the thing they are least proficient at.

Graham Pike is Professor of Forensic Cognition at The Open University and researches eyewitness memory. He has many pet peeves, though the greatest is his hatred of name dropping... which is a real pity because he has worked with both William Shatner and Philip Glenister.

Sophie Scott is Professor of Cognitive Neuroscience at the Institute of Cognitive Neuroscience, which is part of University College London. Sophie carries out research on the neural basis of vocal communication. She is also interested in laughter, both in the research lab and in her own time. Long ago in another life she was one of David Groome's students.

Elizabeth Styles is lecturer in psychology at St. Edmund Hall, University of Oxford. She has taught and examined cognitive psychology for many years and has previously written text books on the psychology of attention for Psychology Press. She has written a highly regarded book on attention, which was good practice for her contribution to the present book. When not working she likes to travel and study archaeology.

Preface

We wrote this book because we felt that it filled an important gap. As far as we know it is the first textbook to cover all of the main aspects of cognitive psychology and all of their associated disorders too. We believe that an understanding of the disorders of cognition is an essential requirement for understanding the processes of normal cognition, and in fact the two approaches are so obviously complimentary that we are quite surprised that nobody had put them together in one book before. There are books about normal cognition, and there are books about cognitive disorders (usually referred to as "cognitive neuropsychology"), but there do not seem to be any other books which cover both topics in full. We feel that this combined approach offers a number of advantages. In the first place, combining normal and abnormal cognition in one book makes it possible to take an integrated approach to these two related fields. References can be made directly between the normal and abnormal chapters, and theories which are introduced in the normal chapters can be reconsidered later from a clinical perspective. We chose to keep the normal and abnormal aspects in separate chapters, as this seems clearer and also makes it more straightforward for those teaching separate normal and abnormal cognitive psychology courses. There is also one further advantage of a combined textbook, which is that students can use the same textbook for two different courses of study, thus saving the cost of buying an extra book.

Another reason for writing this book was that we found the other available cognitive psychology texts were rather difficult to read. Our students found these books were heavy going, and so did we. So we set about writing a more interesting and accessible book, by deliberately making more connections with real life and everyday experience. We also cut out some of the unnecessary anatomical detail that we found in rival texts. For example, most neuropsychology books include a large amount of detail about the structure of the brain, but most psychology students do not really need this. So we decided to concentrate instead on the psychological aspects of cognitive disorders rather than the anatomical details. And finally, we decided to put in lots of illustrations, because we think it makes the book clearer and more fun to read. And also we just happen to like books which have lots of pictures.

So here then is our textbook of cognitive psychology and cognitive disorders, made as simple as possible, and with lots of pictures. We enjoyed writing it, and we hope you will enjoy reading it.

David Groome

Acknowledgements

We would like to offer our sincere thanks to the reviewers who provided valuable comments and suggestions about our manuscript, especially Julie Blackwell Young, Rosalind Horowitz, Sam Hutton, Wido La Heij, Karla Lassonde, Wolfgang Minker, Erik Nilsen, Jane Oakhill, Fenna Poletiek, and Gezinus Wolters. Also our heartfelt thanks to Richard Kemp and Hazel Dewart, who both made valuable contributions to chapters 4 and 10 respectively. Thanks also to those at Psychology Press, and in particular Rebekah Edmondson, Michael Fenton, Ceri Griffiths, and Natalie Larkin. And finally thanks to Richard Cook and Jef Boys at Book Now.

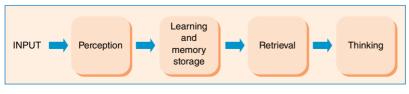
This page intentionally left blank

Contents

1.1 Cognitive processes	3
1.2 Experimental cognitive psychology	6
1.3 Computer models of information processing	10
1.4 Cognitive neuroscience and neuropsychology	12
1.5 Automatic processing	17
1.6 Minds, brains and computers	22
Summary	22
Further reading	23

Introduction to cognitive psychology

David Groome

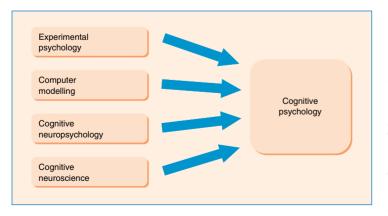

1.1 COGNITIVE PROCESSES

A DEFINITION OF COGNITIVE PSYCHOLOGY

Cognitive psychology has been defined as the psychology of mental processes. More specifically it has also been described as the study of understanding and knowing. However, these are rather vague terms, and whilst they do provide an indication of what cognition involves, they leave us asking exactly what is meant by 'knowing', 'understanding' and 'mental processes'. A more precise definition of cognitive psychology is that it is the study of the way in which the brain processes information. It concerns the way we take in information from the outside world, how we make sense of that information and what use we make of it. Cognition is thus a rather broad umbrella term, which includes many component processes, and this possibly explains why psychologists have found it so difficult to come up with a simple and unified definition of cognitive psychology. Clearly cognition involves various different kinds of information processing which occur at different stages.

STAGES OF COGNITIVE PROCESSING

The main stages of cognitive processing are shown in Figure 1.1, arranged in the sequential order in which they would typically be applied to a new piece of incoming sensory input.


Key Term

Cognitive psychology

The study of the way in which the brain processes information. It includes the mental processes involved in perception, learning and memory storage, thinking and language.

Information taken in by the sense organs goes through an initial stage of perception, which involves the analysis of its content. Even at this early stage of processing the brain is already extracting meaning from the input, in an effort to make sense of the information it contains. The process of perception will often lead to the making of some kind of record of the input received, and this involves learning and memory storage. Once a memory has been created for some item of information, it can be retained for later use, to assist the individual in some other setting. This will normally require the retrieval of the information. Retrieval is sometimes carried out for its own sake, merely to access some information stored in the past. On the other hand, we sometimes retrieve information to provide the basis for further mental activities such as thinking. Thought processes often make use of memory retrieval, as for example when we use previous experience to help us deal with some new problem or situation. Sometimes this involves the rearrangement and manipulation of stored information to make it fit in with a new problem or task. Thinking is thus rather more than just the retrieval of old memories.

The cognitive processes shown in Figure 1.1 are in reality a good deal more complex and interactive than this simple diagram implies. The diagram suggests that the various stages of cognitive processing are clearly distinct from one another, each one in its own box. This is a drastic oversimplification, and it would be more accurate to show the different stages as merging and overlapping with one another. For example, there is no exact point at which perception ceases and memory storage begins, because the process of perception brings about learning and memory storage and thus in a sense these processes are continuous. In fact all of the stages of cognition shown in the diagram overlap and interact with one another, but a diagram showing all of these complex interactions would be far too confusing, and in any case a lot of the interactions would be speculative. Figure 1.1 should therefore be regarded as a greatly simplified representation of the general sequential order of the cognitive processes which typically occur, but it would be more realistic to think of cognition

Figure 1.2 The four main approaches to studying cognitive psychology.

as a continuous flow of information from the input stage through to the output stage, undergoing different forms of processing along the way.

APPROACHES TO THE STUDY OF COGNITION

There have been four main approaches to the study of cognitive psychology (see Figure 1.2).

In the first place there is the approach known as experimental cognitive psychology, which involves the use of psychological experiments on human subjects to investigate the ways in which they perceive, learn, remember or think. A second approach to cognitive psychology is the use of computer modelling of cognitive processes. Typically this approach involves the simulation of certain aspects of human cognitive function by writing computer programs, in order to test out the feasibility of a model of possible brain function. The third approach is known as cognitive neuropsychology, which involves the study of individuals who have suffered some form of brain injury. We can discover a great deal about the working of the normal brain by studying the types of cognitive impairment which result from lesions (i.e. damage) in certain regions of the brain. Brain damage can impair information processing by disrupting one or more stages of cognition, or in some cases by breaking the links between different stages. The fourth approach to cognition is known as cognitive neuroscience, and this involves the use of techniques such as brain imaging (i.e. brain scans) to investigate the brain activities that underlie cognitive processing. The two most widely used brain-imaging techniques are PET scans (Positron Emission Tomography) and MRI scans (Magnetic Resonance Imaging, Figure 1.3). PET scans involve the detection of positrons emitted by radioactive chemicals injected into the bloodstream, whereas MRI scans detect responses to a powerful magnetic field. Both techniques can provide accurate images of brain structures, but MRI is better at detecting changes over a period of time, as for example in measuring the effect of applying a stimulus of some kind.

Figure 1.3 An MRI scanner. Source: Science Photo Library.

Key Term

Experimental psychology

The scientific testing of psychological processes in human and animal subjects.

Computer modelling

The simulation of human cognitive processes by computer. Often used as a method of testing the feasibility of an informationprocessing mechanism.

Cognitive neuropsychology

The study of the brain activities underlying cognitive processes, often by investigating cognitive impairment in brain-damaged patients.

Cognitive neuroscience

The investigation of human cognition by relating it to brain structure and function, normally obtained from brainimaging techniques. These four approaches to cognition have all proved to be valuable, especially when it has been possible to combine different approaches to the same cognitive process. The rest of this chapter deals with these approaches to cognitive psychology, starting with experimental cognitive psychology (Section 1.2), then computer modelling (Section 1.3), and finally cognitive neuroscience and neuropsychology (Section 1.4). Subsequent chapters of the book will continue to apply the same basic approaches in a more detailed study of each of the main areas of cognition.

1.2 EXPERIMENTAL COGNITIVE PSYCHOLOGY

THE FIRST COGNITIVE PSYCHOLOGISTS

The scientific study of psychology began towards the end of the nineteenth century. Wilhelm Wundt set up the first psychology laboratory at Leipzig in 1879, where he carried out research on perception, including some of the earliest studies of visual illusions. In 1885 Hermann Ebbinghaus published the first experimental research on memory, and many subsequent researchers were to adopt his methods over the years that followed. Perhaps the most lasting work of this early period was a remarkable book written by William James (Figure 1.4) in 1890, entitled *Principles of Psychology*. In that book James proposed a number of theories which are still broadly accepted today, including (to give just one example) a theory distinguishing between short-term and long-term memory.

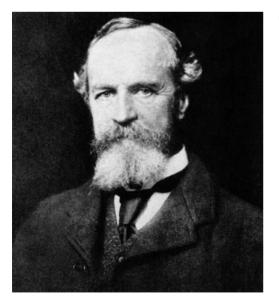


Figure 1.4 William James. Source: Science Photo Library.

THE RISE AND FALL OF BEHAVIOURISM

Cognitive psychology made slow progress in the early years due to the growing influence of behaviourism, an approach which constrained psychologists to the investigation of externally observable behaviour. The behaviourist position was clearly stated by Watson (1913), who maintained that psychologists should consider only events that were observable, such as the stimulus presented and any consequent behavioural response to that stimulus. Watson argued that psychologists should not concern themselves with processes such as thought and other inner mental processes which could not be observed in a scientific manner. The behaviourists were essentially trying to establish psychology as a true science, comparable in status with other sciences such as physics or chemistry. This was a worthy aim, but like many

worthy aims it was taken too far. The refusal to consider inner mental processes had the effect of restricting experimental psychology to the recording of observable responses, which were often of a rather trivial nature. Indeed, some behaviourists were so keen to eliminate inner mental processes from their studies that they preferred to work on rats rather than on human subjects. A human being brings a whole lifetime of personal experience to the laboratory, which cannot be observed or controlled by the experimenter. A rat presents rather fewer of these unknown and uncontrolled variables (Figure 1.5). A good example of the behaviourist

Figure 1.5 A rat learning to run through a maze. Source: Shutterstock.

approach is the classic work carried out on learning by B.F. Skinner (1938), who trained rats to press a lever in order to obtain a food pellet as a reward (or 'reinforcement'). The work of Skinner and other behaviourists undoubtedly generated some important findings, but they completely disregarded the cognitive processes underlying the responses they were studying.

GESTALT AND SCHEMA THEORIES

Despite these restrictions on mainstream psychological research, some psychologists began to realise that a proper understanding of human cognition could only be achieved by investigating the mental processes which the behaviourists were so determined to eliminate from their studies. Among the first of these pioneers were the **Gestalt** psychologists in Germany, and the British psychologist Frederick Bartlett. Their work returned to the study of cognitive processes and it helped to lay the foundations of modern cognitive psychology.

It is very easy to demonstrate the importance of inner mental processes in human cognition. For example, a glance at Figure 1.6 will evoke the same clear response in almost any observer. It is a human face. However, a more objective analysis of the components of the figure reveals that it actually consists of a semi-circle and two straight lines. There is really no 'face' as such in the figure itself. If you see a face in this simple figure, then it is you, the observer, who has *added* the face from your own store of knowledge.

The idea that we contribute something to our perceptual input from our own knowledge and experience was actually proposed by a number of early theorists, notably the Gestalt group (Gestalt is German for 'shape' or 'form'). They suggested that we add something to what we perceive, so that the perception of a whole object will be something more than just the sum of its component parts (Wertheimer, 1912; Kohler, 1925). They argued that the perception of a figure depended on its 'pragnanz' (i.e. its meaningful content), which favoured the selection of the simplest and best interpretation available (Koffka,

Key Term

Behaviourism An approach to psychology which constrains psychologists to the investigation of externally observable behaviour, and rejects any consideration of inner mental processes.

Gestalt psychology An approach to psychology which emphasised the way in which the components of perceptual input became grouped and integrated into patterns and whole figures.

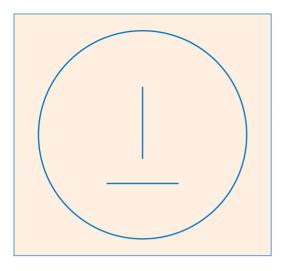
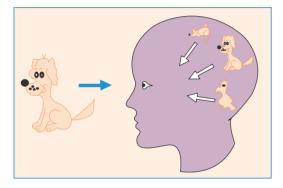



Figure 1.6 A shape recognised by most observers.

Key Term

Schema

A mental pattern, usually derived from past experience, which is used to assist with the interpretation of subsequent cognitions, for example by identifying familiar shapes and sounds in a new perceptual input. 1935). These theories were perhaps rather vague, but they did at least make an attempt to explain the perception of complex figures such as faces. The behaviourist approach, which refused to consider any influence other than the stimulus itself, could not offer any explanation at all for such phenomena.

The schema theory proposed by Bartlett (1932) was another early attempt to provide a plausible explanation for a person's ability to make sense of their perceptual input. The schema theory proposes that all new perceptual input is analysed by comparing it with items which are already in our memory store, such as shapes and sounds which are familiar from past experience. These items are referred to as 'schemas', and they include a huge variety of sensory patterns and concepts. Figure 1.7 illustrates the process of selection of an appropriate schema to match the incoming stimulus. (NB: This is purely diagrammatic. In reality there are probably millions of schemas available, but there was not enough space for me to draw the rest of them.)

The schema theory has some interesting implications, because it suggests that our perception and memory of an input may sometimes be changed and distorted to fit our existing schemas. Since our schemas are partly acquired from our personal experience, it follows that our perception and memory of any given stimulus will be unique to each individual person. Different people will therefore perceive the same input in different ways, depending

on their own unique store of experience. Both of these phenomena were demonstrated by Bartlett's experiments (see Chapter 6 for more details), so the schema theory can be seen to have considerable explanatory value. The schema approach has much in common with the old saying that 'beauty lies in the eye of the beholder'. Perhaps we could adapt that saying to fit the more general requirements of schema theory by suggesting that 'perception lies in the brain of the perceiver'. As a summary of schema theory this is possibly an improvement, but I would concede that it possibly lacks the poetry of the original saying.

Schema and Gestalt theory had a major influence on the development of cognitive psychology, by emphasising the role played by inner mental processes and stored knowledge, rather than considering only stimulus and response. However, it would take many years for this viewpoint to take over from behaviourism as the mainstream approach to cognition.

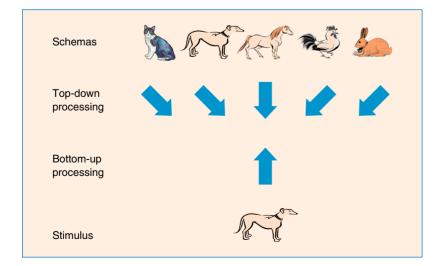
TOP-DOWN AND BOTTOM-UP PROCESSING

Inspired by the schema theory, Neisser (1967) identified two main types of input processing, known as **top-down** and **bottom-up** processing. **Top-down processing** involves the generation of schemas by the higher cortical structures, and these schemas are sent down the nervous system for comparison with the incoming stimulus. Topdown processing is also sometimes referred to as schema-driven or conceptually driven processing.

Bottom-up processing is initiated by stimulation at the 'bottom end' of the nervous system (i.e. the sense organs), which then progresses up towards the higher cortical areas. Bottom-up processing is also known as stimulus-driven or data-driven processing, because it is the incoming stimulus which sets off some appropriate form of processing. One obvious difference between 'top-down' and 'bottom-up' processing is that their information flows in opposite directions, as shown in Figure 1.8.

Bottom-up processing theories can help to explain the fact that processing is often determined by the nature of the stimulus (Gibson, 1979). However, bottom-up theories have difficulty explaining the perception of complex stimuli, which can be more easily explained by top-down theories.

Although there have been disputes in the past about the relative importance of 'top-down' and 'bottom-up' processing, Neisser (1967) argues that both types of processing probably play a part in the analysis of perceptual input and that in most cases information processing will involve a combination of the two. We can thus think of input processing in terms of stimulus information coming up the system, where it meets and interacts with schemas travelling down in the opposite direction.


Key Term

Top-down (or schema-driven) processing

Processing which makes use of stored knowledge and schemas to interpret an incoming stimulus (contrasts with bottom-up processing).

Bottom-up (or stimulus-driven) processing

Processing which is directed by information contained within the stimulus (contrasts with topdown processing).

Figure 1.8 Top-down and bottom-up processing.